NEZ PERCE COUNTY COURTHOUSE
EXISTING BUILDING ASSESSMENT REPORT

April 29, 2019
Table of Contents

Executive Summary – Nez Perce County Courthouse... 2
Courthouse Cost Estimate Summary .. 6
Courthouse Architectural Evaluation .. 7
Courthouse Structural Evaluation.. 10
Courthouse Mechanical / Plumbing Evaluation.. 13
Courthouse Electrical Evaluations .. 14
Courthouse Reference Information ... 18
Courthouse Photos ... 19
Secondary Evaluation – Prosecutor’s Office ... 35
Secondary Evaluation – Brammer Building .. 39
Nez Perce County Courthouse – Executive Summary

Executive Summary – Introduction

On behalf of Nez Perce County, an observational tour was conducted of the existing Nez Perce County Courthouse Facility located at 1230 main St. Lewiston, Idaho, on February 13, 2019 to observe and generally evaluate the architectural, structural, mechanical, and electrical systems of the facility which was constructed beginning in the late 1880’s and continuing throughout the past century plus.

The focus of this report is to address the conditions of the existing 35,500 s.f. Nez Perce County Courthouse facility and the anticipated costs associated with the required upgrades and renovations for its reuse as a civic building with a 75-year life span that would meet the County’s current needs only and does not provide for any future growth needs.

The current Courthouse and site are unsecured with the inability to properly segregate; courts staff, the general public, and inmates awaiting trial. There is currently a large security risk to the courts staff and judges with the free flow of public on the campus and within the Courthouse, that by department standards should be secure. It is recommended that securing the Courthouse complex be a top priority for both the safety of staff and the general public. Net usable space would be greatly reduced within the Courthouse by providing appropriate security segregation, we are unable to determine at this time what the net usable area reduction would be and it has not been factored into the building repair and replacement cost.

Based on the program needs assessment for departments currently located in the courthouse, the county requires an additional 25,000 s.f. of additional area to meet the current operation needs of 60,500 s.f., this does not include departments currently housed in the Brammer Building, Extension Office, or Outbuilding needs. Costs associated with department relocation during construction and analysis of phasing costs associated with the renovation and expansion of the existing Courthouse have been included in the cost estimate summary, work occurring within the Courthouse will largely occur on weekends and evenings to maintain basic operations of the facility.

This report addresses the lack of ADA access to the main courtroom but does not address the lack of access to areas such as the IT Department and the Court Clerks area to the east of the Main Courtroom as there is not a reasonable way to provide ADA access to these areas. Bringing the existing facility up to current ADA standards will reduce the net usable space by approximately 20% for the facility and departments which are already lacking adequate space and arrangement within the Courthouse.

Included in this report is a cost analysis for the addition of parking to meet the current Courthouse staffing needs, demolition of the Prosecutors Office would be required to allow for a parking garage structure. Currently staff are required to park off-site during large Jury trials to accommodate parking needs, increasing the security risk to staff, an additional 100 parking stalls would be needed for large jury trials.

Contingency funds have been added in the cost estimate, it is advised that additional funds are held in reserve to deal with unforeseen circumstances, due to the age of the facility and multiple generations of additions the likelihood of discovering unforeseen conditions during construction is high, unforeseen
conditions that could be discovered could include; unsuitable soil conditions under footings and slabs due to soil erosion, deterioration of structural footings and foundations, damaged structural beams and columns due to overloading or seismic activity, additional materials discovered containing asbestos, mold mitigation.

Executive Summary – General Overview

The existing approximately 35,500 s.f. facility is a multi-storied compilation of multiple buildings and additions whose construction spans more than a century.

The original 10,500 s.f. 2-story brick masonry courthouse with basement vaults and cupola tower centered on the roof of the building was constructed in 1889 and subsequent additions have wrapped the east, north and west side of the original structure. Additions were built as early as 1905 when vaults were added to the east side of the original building.

In 1928, a large 3-story addition was added to the north side of the building creating a new classical styled limestone façade that pushed the entrance closer to Main Street. This addition added much needed office space, additional courtrooms and included the County Jail on the 3rd Floor. The large cupola over the main courtrooms was removed from the roof of the original structure at this time.

1973 saw the construction of the 8,400 s.f. three-story concrete masonry unit (CMU) addition with a basement added to the west side of the complex. This addition housed multiple new county offices, including the County Commissioners, Veteran’s Administration and Driver’s Licenses offices courtrooms in the basement and 1st Floors. The 2nd Floor created additional courtrooms, jury rooms and judge’s chambers. The 3rd floor was an expansion of the County Jail with day room, laundry and kitchen facilities.

In 2007, a new jail was constructed on the north side of the Clearwater River, and use of the 3rd Floor of the Courthouse was largely abandoned, except for a few rooms used for bulk storage of paper files. The relocation of the jail promoted the 2008 construction of a new holding facility and sally port, which were squeezed on the site and attached to the east side of the original structure.

Executive Summary – Architectural systems

The exterior finishes of the building generally fall into two categories: good and poor. The east and north elevations are in good condition and the south and west elevations are in poor conditions.

There is a wide range of interior finishes spanning the centuries. Most are in serviceable condition, but are showing their age. The floor finishes vary in type and age, and most if not all, are due for replacement. The judicial bench in the Main Courtroom is historic in nature and all efforts need to be made for its safe removal and reuse.

It is anticipated that asbestos abatement would be required within the facility based on visual observation of the age of finishes and systems within the courthouse.

There does not appear to be adequate restroom facilities for the complex, and those that are there vary in condition from good to poor. Only one accessible facility is available.
The exterior double pane windows and storefront on the main level, second, and third level are in good condition and generally do not need replacement, however some may need new weather stripping and sealing around the frames.

There is a great variety of door types and styles within the complex. There is no continuity of hardware.

The roofing appears to be in good and maintained condition. There are scuppers located at three of the four roof drain locations, but this should not be considered an issue with continued maintenance.

The existing handrails within the stairwells would need to be modified or replaced to meet current ADA code requirements. The elevator is in working condition, due to the age of the interior cab finishes it is recommended that the finishes be replaced.

Executive Summary – Structural Systems

The existing Nez Perce County Courthouse building appears to be structurally inadequate for its current use as a public courthouse building. The sustained daily high traffic live loads and heavy loading due to storage of records and clerk documents appear to exceed the loading originally considered when it was built.

Included in the cost estimate summary; Materials testing of unreinforced masonry (URM) walls for repointing and matching of mortar strength; Infill & repair of existing East exterior wall at the first floor of the original 1890’s structure prior to vault removal; Infill & repair of existing East exterior wall above the first floor after vault removal; Repair and repointing of existing URM walls; Repair of existing stone rubble foundation walls; Miscellaneous concrete repairs; Additional investigation in overbuild framing of original hip and gable roof; Seismic retrofit of overbuild parapet around perimeter of original building.

Gravity Summary: The governing code at the time the building was built called for a “public assembly” load equivalent to the current code’s office load requirements. In the actual courtroom itself, hallways, stairs, and of course the storage areas we would exceed this load and require retrofit to the floor framing.

Lateral Summary: Currently, clerical documents and record storage which is considered heavy loading is located all throughout the building including the vault, which is recommend to be demolished, holds a significant amount of records. The extent of this storage load would impact the seismic weight and could potentially require a full retrofit of the building. This include testing analysis and retrofit/repair of the walls themselves. With retrofit and repair, the existing courthouse building may be suitable for continued use.

Executive Summary – HVAC /Plumbing Systems

The facility currently employs numerous HVAC systems of various types, ages and conditions. These include packaged rooftop units ranging in age from 20 to 40+ years old, electric cabinet unit heaters of approximately 30+ years of age, mini-split systems of 5-10 years of age and split DX systems of various ages.

The Domestic water system consists of a mix of galvanized and copper piping of varying age. The Galvanized piping appears to be somewhat corroded in several areas. The waste and vent systems are a...
mix of cast iron hub and spigot, and cellular core ABS piping. The cast iron piping appears to be original to the building. Plumbing fixtures are of various age and condition. In general, the observed HVAC systems and plumbing systems are considered to be at its useful life, but operable, with respect to the age and condition.

Executive Summary – Electrical Systems

The electrical systems associated with this facility were generally reviewed to assess age, operational condition, efficiency, distribution, and overall system capacities. The review encompassed the following systems: electrical distribution systems, lighting systems, lighting control systems, fire alarm systems and the low-voltage telecommunications systems.

In general, the electrical systems serving and located throughout the facility appear to have been modified and extended to accommodate current operational needs. The electrical distribution equipment appears to be consistent in age to the building and subsequent additions. In general, the observed electrical distribution system was considered to be at its useful life, but operable, with respect to the age and condition.

The on-site backup generator for the facility was observed to be located in the basement of the facility, the fuel lines were abandoned, and the generator has been decommissioned.
Executive Summary – Anticipated Costs

Summary lists the recommended upgrades and additions to the existing Nez Perce County Courthouse for continued use.

<table>
<thead>
<tr>
<th>BUILDING REPAIR AND REPLACEMENT COST</th>
<th>TOTAL EXISTING SF</th>
<th>TOTAL COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCHITECTURAL UPGRADES</td>
<td>35,500</td>
<td></td>
</tr>
<tr>
<td>- Demo 3<sup>rd</sup> floor for future use</td>
<td></td>
<td>$380,000</td>
</tr>
<tr>
<td>- Renovate 3<sup>rd</sup> Floor</td>
<td></td>
<td>$950,000</td>
</tr>
<tr>
<td>- Interior upgrades all other floors</td>
<td></td>
<td>$1,395,000</td>
</tr>
<tr>
<td>- Exterior repairs and upgrades</td>
<td></td>
<td>$904,000</td>
</tr>
<tr>
<td>- Asbestos abatement</td>
<td></td>
<td>$532,500</td>
</tr>
<tr>
<td>STRUCTURAL UPGRADES</td>
<td></td>
<td>$1,205,000</td>
</tr>
<tr>
<td>MECHANICAL UPGRADES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- HVAC</td>
<td></td>
<td>$1,420,000</td>
</tr>
<tr>
<td>- Plumbing</td>
<td></td>
<td>$355,000</td>
</tr>
<tr>
<td>- Fire Protection</td>
<td></td>
<td>$177,500</td>
</tr>
<tr>
<td>ELECTRICAL UPGRADES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Lighting and lighting control upgrades; Renovated power distribution; Renovated telecommunications; Renovated fire alarm system</td>
<td></td>
<td>$675,000</td>
</tr>
<tr>
<td>- Access Control System</td>
<td></td>
<td>$710,000</td>
</tr>
<tr>
<td>SITE SECURITY</td>
<td></td>
<td>$64,000</td>
</tr>
<tr>
<td>BUILDING REPAIR AND SYSTEMS REPLACEMENT SUBTOTAL</td>
<td></td>
<td>$8,768,000</td>
</tr>
<tr>
<td>NEW ADDITION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 25,000 s.f. of new addition construction cost to meet the current courthouse department needs.</td>
<td></td>
<td>$7,500,000</td>
</tr>
<tr>
<td>PROSECUTORS OFFICE DEMOLITION</td>
<td></td>
<td>$93,600</td>
</tr>
<tr>
<td>PARKING GARAGE FOR (120) VEHICLES</td>
<td></td>
<td>$3,360,000</td>
</tr>
<tr>
<td>PROJECT PHASING (20%)</td>
<td></td>
<td>$3,944,320</td>
</tr>
<tr>
<td>A/E DESIGN FEES AND REIMBURSABLES (12%)</td>
<td></td>
<td>$2,366,592</td>
</tr>
<tr>
<td>CONTRACTOR PROFIT & OVERHEAD (20%)</td>
<td></td>
<td>$3,944,320</td>
</tr>
<tr>
<td>ESCALATION COST (7%)</td>
<td></td>
<td>$1,380,512</td>
</tr>
<tr>
<td>CONTINGENCY (20%)</td>
<td></td>
<td>$3,944,320</td>
</tr>
<tr>
<td>TEMPORARY FACILITIES LEASE (ANNUALLY FOR 2 YEAR DURATION)</td>
<td></td>
<td>$408,000</td>
</tr>
<tr>
<td>GRAND TOTAL</td>
<td></td>
<td>$35,709,664</td>
</tr>
</tbody>
</table>
Courthouse – Architectural Evaluation

Exterior Finishes

The exterior is a combination of plaster covered brick masonry on the south and parts of the east elevation (original structure), acrylic coated foam insulation (EIFS), on the south, east and north sides of the holding facility, cut limestone on the remainder of the east elevation and on the majority of the north elevation (1928 expansion), and concrete stucco on the all three side of the 1973 addition on the west end of the complex.

The conditions of the exterior range from Good -1928 limestone, which is in need of cleaning and some minor repair and the 2007 holding facility EFIS; to Poor -1973 concrete stucco, showing extensive cracking and moisture intrusion, and plaster of unknown age over 1889 brick masonry which also shows signs of excessive cracking and moisture intrusion between the plaster and the brick.

Interior Finishes

There is a wide range of interior finishes spanning the centuries. Most are in serviceable condition but are showing their age.

Walls: Plaster is the primary system in the 1889 and 1928 portions of the building, still exposed in most public areas, but covered with various types of wood paneling in many of the office spaces. There is still a fair amount of decorative wood wainscot and molding in 1889 portion of the building, some of which has been painted.

The 1973 addition is a combination of gypsum wall board and painted CMU. The walls of the holding facility are covered in fiberglass reinforced paneling (FRP).

Floors: The public areas of the complex are mostly ceramic tile on the 1st floor and rolled low pile carpet on the 2nd floor. The tile is cracked and shows signs of failure in the Lobby of the Main Entrance and in the main hallway of the 1973 addition. Where there is carpet, it is worn, sagging, stained and appears to have reached the end of its useful life.

The private areas of the facility are mostly rolled low pile carpet, with a few areas of vinyl tile (mostly in the basement of the 1973 addition) and some newer sheet vinyl in high traffic areas of the Assessor’s office. Most of the carpeted areas are in need of replacement due to age.

Ceilings: The vast majority of the ceilings are acoustic lay-in 2’x4’ tiles in a suspended grid system. The replacement of damaged tiles over time has led to an inconsistent look as replacement tiles are often not of the same style as the original ones. Numerous tiles are broken or water-stained.

Main Courtroom: Walls are gypsum wall board with wood wainscot. Ceilings are 12x12 acoustic tiles glue to a wood framed gypsum wall board ceiling. Flooring is rolled low pile carpeting. Of special note in this room is the historical judicial bench which needs to be preserved.

Secondary Courtrooms: Walls are gypsum wall board with wood wainscot. Ceilings are acoustic lay-in 2’x4’ acoustic tiles in a suspended grid system. Flooring is rolled low pile carpeting.
All of the finishes on the 3rd Floor surfaces are excessively worn or damaged. The walls are a combination of brick, CMU, steel and gypsum wallboard. The flooring is a combination of sheet vinyl, rolled low pile carpet and painted concrete. The ceilings are exposed concrete, gypsum wallboard and acoustic lay-in 2’x4’ tiles in a suspended grid system.

Interior Doors

There are numerous types and styles of existing doors in the complex, some which appear to be original to the 1889 building. These are solid wood doors with wood frames and associated molding, often with ornate hardware. Some have been retrofitted with new security locksets.

Other doors are solid core flush wood doors in wood frames, solid core wood doors in hollow metal frames, and hollow metal doors in hollow metal frames.

Most doors seemed to be functioning adequately, but an extensive review of the doors and their performance was not conducted.

There are a number of vault doors in the facility. The vaults are occupied for a wide range of uses, from office space to storage. It appears that the majority of the vault doors still have functional locking mechanisms.

Public Restrooms

There are multiple restrooms scatter throughout the complex. There are restrooms in the basement of the 1928 addition and on all four floors of the 1973 addition. The 3rd Floor restrooms are not accessible to the public. Some are public and some are private for use by staff.

There is only one accessible restroom within the entire complex (1st floor of the 1973 addition) and it has been converted from single sex multi-user restroom to multi-sex/single user restroom.

Fixtures and finishes in the 1928 portion of the building are dated, worn and in need of refurbishment or replacement. Fixtures and finishes in the 1973 portion of the building are in serviceable condition and can be continued to be used.

Exterior Doors and Windows

All of the public entrances to the building, or which there are four, consist of aluminum store front and are in good working order. It is unclear if the storefront framing systems were thermally broken frames, but it is assumed that due to the age of the facility that they are not.

With the exception of the 3rd Floor, the exterior windows are aluminum retrofits, most of which have 1” insulated glazing units. Most are operable, awning type function and the weather-stripping is failing on a large portion of them.

The 3rd Floor still has single pane wood windows in the old jail location. Other windows are a combination of aluminum framed windows per the 1973 additional.
Roofing

Though there are signs of roof leaks in the upper floors of the building, it was unclear as to the age of the damage. The roofing system is a single-ply membrane over rigid insulation which was installed in 1999. It appears to be in good condition but is reaching the end of its warranted life span.

The roof of the holding facility is also a single-ply membrane system installed in 2008. This roof membrane is in very good condition and being only 10 years old should have another 10 years of useful life, the R-value roof insulation was undetermined at this time.

Vertical Circulation

There are two public stairways on the interior to the building, the main stair in the 1889 portion of the building and a secondary stairway in the 1973 addition.

The Main Stair is a combination of a concrete stairway to the basement for access to the public restrooms, and an open wood stairway to the 2nd Floor for access to the Courtrooms. This stairway is also open to the 3rd Floor but signed “No Public Access”. Flooring for the stairs varies from vinyl composite tile, rubber treads, carpet, and sheet vinyl.

The handrails for the portion of the stair to the basement are sturdy and functional, but do not meet current code. The existing handrail/guardrail for the open stair does not meet the current code requirements, either. Replacement or modifications would need to be made to meet the ADA for handrail requirements and a guardrail would need to be added to make the stair code compliant.

The 1973 stairwell is a concrete stair with a painted surface and embedded abrasive nosings. The handrails for the portion of the stair to the basement are sturdy and functional, but do not meet current code.

Other stairways: There are two additional stairways in the complex, one in the central vault for access to the lower vault, and one for access to the 2nd level vault on the east side.

The two vault stairways do not comply to current codes for height of riser, width of tread, or for handrail and guardrail requirements.

There is only one elevator in the facility located adjacent to the main lobby on the east side of the facility, the elevator is shared by the public and the Sheriff’s office for transportation of prisoners from the holding facility to the courtrooms. The elevator is in working condition; however, the interior cab finishes are worn and should be replaced.

Exterior Fire Escapes: There are three exterior steel fire escapes from the building that are all currently in use. They appear to be structurally stable, but none of the handrail/guardrail meet current code.
The original structure constructed in the 1890’s consisted of unreinforced masonry brick basement walls & stone rubble foundation walls in areas without a basement. The foundation system is unknown. The bearing walls consists of three-wythe brick unreinforced masonry brick & the first and second floor framing was constructed of steel wide flange beams spaced roughly at 6’ O.C. with wood joists as intermediary purlins. The steel beams appeared to have been pocketed into the brick walls and the floor framing was finished with a concrete topping over wood deck. The hip and gable roof were wood-framed. It is assumed that the lateral resisting system was the load-bearing unreinforced masonry walls.

The 1928 addition consisted of unreinforced concrete bearing walls. The floor and roof framing of the new building addition is constructed of cast in place reinforced concrete beams with simply supported concrete slabs spanning between 5’ and 6’ based on the existing drawings. The exact extents of the overbuild framing and new parapet wall over the original wood-framed roof are unknown as they are not documented in the drawings however site observations provide some insight in how this was constructed. It is believed that unreinforced concrete shear walls were the primary lateral resisting system for this section of the building.

The later additions constructed in the 1970’s and beyond appear to be a mix of Concrete and CMU construction based on the existing drawings. The 1973 addition included reinforced concrete walls and pre-assembled “span-deck” floor systems. It is assumed the lateral resisting system is the reinforced concrete shear walls. Based on the limited drawings the later 1977 jail expansion consisted of modifications to the interior of the building using CMU walls and cold formed steel stud walls w/ masonry veneer. It is unclear whether any of the structural bearing walls or lateral systems were modified at the time.

Several smaller additions such as exterior ramps and stairs were added to the extents of the building in later years but there is no documentation for these areas.

Existing Conditions & Observations

Several cracks were observed in the exterior of the building. It is unclear whether these cracks extend beyond the building finishes but were found to be contained mostly around the corners of windows in the 1928 addition, and continuously throughout the face of the original building. The later additions did not show any significant cracks. It is believed that the 1928 addition and renovation may have compromised the structural foundation of the vault addition. The drawings show instructions to underpin the vault area in order to extend the basement and this may have resulted in a condition where proper compaction below the vault was not achievable causing severe differential settlement between the addition and the original building. The vault addition appears to be structurally unstable and should not be occupied.

The unreinforced masonry walls (URM) in the basement of the original courthouse building appeared to have several voids in the mortar. The mortar itself was very brittle and could be easily scraped off.

The first-floor framing above consisted of steel framing that attached to the URM wall with beam pockets. Tin domed ceiling closures obstructed any view of the wood framing that is assumed to span between the steel supports based on the drawings.
Through openings in the existing walls (assumed to have been made for installation of later mechanical, electrical & plumbing systems) the floor framing beyond the basement areas showed wood joists and stone rubble foundation walls. Many of these had been penetrated with large openings for the aforementioned MEP systems.

Concrete walls and beams in the basement of the 1928 addition had significant consolidation issues and much of the aggregate was exposed at the surface. However, there were not any observations of significant cracks at these areas.

Along the first floor of the building, there were several small cracks seen in the walls throughout various areas. There were also severe cracks in the floor and many areas of the floor were uneven.

At the second and third floors similar issues with uneven flooring was observed, and specific areas detailed in this report had significant structural issues. The roof was also visually inspected but due to flashing and roofing not much was visible. There were portions of the 1928 overbuild parapet on the original 1890’s building that were exposed and showed they were constructed of unreinforced brick. Additionally, there were several large mechanical units on the roof observed however it did not appear any of these were over the overbuild wood-framed roof but were located over the concrete roof of the 1928 addition.

With respect to the general building conditions, we recommend removal of any excess finishes and floor overbuilds that add dead loads to both walls and floors and repointing of the exposed basement unreinforced masonry walls. This building does not appear to be suitable for high-traffic public courthouse use with significant heavy loads due to clerical documents and record storage as it is currently being utilized.

Primary Areas of Structural Deterioration

Based on the visual observations and record drawings there were two primary areas of concern that showed either significant structural deterioration and/or possible life safety concerns in the event of a seismic event.

The first and most critical of these was the undocumented addition of a multi-story vault. This addition appears to be constructed using unreinforced masonry brick and is located on the east side of the original Courthouse building.

Starting at the first floor and progressively getting worse as you go up, this addition appears to have sheared off at the junction of the original building’s exterior and the intersecting walls and floors of the vault. The addition has settled unevenly and has started to pull away from the original building with significant observable gaps ranging from 1”-3”. The floors at each level show large structural cracks and it is visible that the course of brick connecting the vault floors to original courthouse wall has been significantly damaged.

If preservation of the historic portions of the current Nez Perce Courthouse building is desired, it is recommended that the existing vault addition on the east side of the building be demolished and the exterior east wall of the original courthouse be repaired. Note that this would require shoring at all floor levels prior to demolition.

The second primary area of structural concern is the overbuild roof and parapet constructed during the 1928 addition over the wood-framed hip and gable roof on the original 1890’s structure. At the area
between the current hard ceiling and the old arched courtroom ceiling above the second floor, the original overhangs of the wood joists appear to have been cut at the exterior walls. The original wood nailer has been left in place, and the space in between the joist has been filled in with broken and irregular pieces of brick that have been poorly mortared into place before installing an unreinforced masonry parapet wall over the top of this assembly. This parapet stands roughly 8’-10”.

Although most of the actual overbuild was not visible during this visit since the original hard ceiling was mostly in place, the areas that were visible revealed two large wide flange steel girders that span from east to west. They are about 25” in depth and are asymmetrical with a bottom flange width of 18” and a top flange width of roughly 10”-12”. These steel girders are supported with wood columns that have a cast iron “cap” that sits on top of the column. The girders themselves have no actual attachment to these caps. One side of each of the two girders shows significant rotation of the cap with respect to the direction of the girder. These steel girders appear to be simply sitting on the caps with no lateral support.

These two conditions at the roof are laterally unstable and are a concern for life safety in the event of a seismic disturbance.

The lateral stability of the overbuild parapet framing over the original building does not appear to be sufficient and may pose a risk to life safety in the event of a seismic event.

We recommend a seismic retrofit of the current overbuild roof parapet. Assuming the framing above the hard ceiling (not observed) does not provide lateral stability to the parapet this would likely require the addition of kickers around the perimeter of the overbuild parapet and possible post-installed reinforcement at the infill bricks between the old wood joists. It is also recommended that the steel girder supports be reinforced in order to provide additional lateral stability at their connections.
Courthouse – Mechanical / Plumbing Evaluation

HVAC System

The building is served by a custom air handling unit with DX cooling, hot water heating, and a packaged DX rooftop unit with gas heat. The perimeter zones and corridors of the building are heated by hot water cabinet unit heaters. Heating hot water provided is by a steam boiler and steam to hot water heat exchanger. The air handling unit, DX compressor, and boiler are located in the basement, with a roof mounted condenser for the DX cooling. The HVAC equipment controls are pneumatic. Insulation on heating hot water system should be checked for asbestos.

The custom air handling unit, dx compressor and condenser, boiler, and cabinet unit heaters appear to be original to the building. They appear to be in functional condition but are at the end of their useful life.

The packaged DX rooftop unit appears to be a somewhat recent addition. It appears to be approximately 10-20 years of age and in functional condition.

The following matrix lists a recommended replacement timeline for HVAC systems based on American Society of HVAC and Refrigeration Engineers (ASHRAE) service life estimates ASHRAE HVAC Applications Handbook Chapter 37 table 4.

<table>
<thead>
<tr>
<th>System</th>
<th>System Condition</th>
<th>System Age (years)</th>
<th>Expected Service Life</th>
<th>Replace (y/n)</th>
<th>Replacement timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Furnaces</td>
<td>Functional</td>
<td>30+</td>
<td>18</td>
<td>Y</td>
<td>ASAP</td>
</tr>
<tr>
<td>Duct Furnace</td>
<td>Functional</td>
<td>30+</td>
<td>18</td>
<td>Y</td>
<td>ASAP</td>
</tr>
<tr>
<td>Mini Splits</td>
<td>Good</td>
<td>10</td>
<td>15</td>
<td>N</td>
<td>0-5 years</td>
</tr>
</tbody>
</table>

Plumbing System Condition

The Waste and Vent systems are cast iron hub and spigot construction and are original to the building and in fair condition. The domestic water piping is covered with insulation but assumed to be sweat copper throughout.

The waste, vent, and domestic water systems are all at the end of their useful lives and should be replaced in their entirety.

Plumbing fixtures appear to be original to the building and do not meet current code requirements, these fixtures are at the end of their useful life and should be replaced.

Fire Protection

There is no fire sprinkling system in the building, retrofit the building with a fire sprinkling system if required by code for occupancy.
Courthouse – Electrical Evaluation

Power Distribution Systems

The power distribution system serving the facility was observed to have the following characteristics:

- **System Voltage:** 240/120V, 3-phase, 4-wire
- **Rated Ampacity:** 1,200 Amps
- **Serving Transformer:** Overhead pole mounted.
- **Recorded Demand:** Not Available
- **On-Site Generator:** 240/120V, 3-phase, 4-wire, 55KW (Decommissioned)

Service Entrance Observations: The main service to the facility is derived from utility-served transformers located on a utility pole at the northeast corner of the facility. The overhead secondary service drop was observed to be along the northeast property line of the facility. As such, the secondary voltage connections from the east property line are routed overhead to the existing building and continue into the basement through the overhead ceiling cavity of the basement to the service entrance electrical gear.

Main Service Switchboard Observations: The main panel for the facility was observed to be located in the basement of the facility near the east corner of the building’s north orientation. The room in which the main service resides is primarily dedicated electrical space and also services mechanical and plumbing equipment. The main switchboard is connected to the utility transformers with paralleled raceway feeders that is directly connected to the switchboard main disconnect. Our observations indicate that there is one (1) main service disconnect rated at 1,200 Amps capacity, with a circuit breaker as the overcurrent protection device. Distribution to the remainder of the facility is served from the distribution sections of the main service switchboard. Distribution to branch panels throughout the remainder of the facility was observed to leave the main switchboard in a raceway system for most of the branch panel distribution. A mix of fusible overcurrent protection and circuit breakers were observed to be implemented for all distribution systems. It was observed that available bussed space within the distribution equipment is limited as a result of previous additions and modifications.

Branch Panel Observations: In general terms, branch electrical panels throughout the facility were observed to be aged and contained a mix of various manufacturer types including load centers. In most cases, branch electrical panels were observed to be in circulation spaces and surface mounted on masonry walls. The branch electrical panels were observed to be single phase type and manufactured by Square D, cutler hammer, and ITE. Some series of products are no longer produced limiting the capacity and growth considerations of the electrical distribution system. It was generally observed that physical space about the branch panelboards appeared to be adequate for most applications in that no constructed barriers were present that could impede access and working space around the equipment.

On-Site Generator/Emergency/Standby Power Systems Observations: The on-site generator for the facility was observed to be located in the basement of the facility near the east corner of the building’s north orientation. The room in which the generator and associated transfer switch resides in a dedicated electrical space. The generator was noted to be in disrepair and neglect. The fuel lines were abandoned, and the generator has been decommissioned.
Miscellaneous Power System Observations: Other features of the electrical distribution system that were observed include the following:

- **Elevator(s):** One (1) elevator was observed to be in operation within the facility and was to provide access to the basement, first, second, and third levels of the building. The elevator machine installed is rated for 240V operation and is served by the main switch gear. Two-way communications systems required at elevator lobbies were not observed to be installed within the facility.
- **Lightning Protection Systems:** The facility does not appear to be equipped with Lightning Protection Systems or Equipment.
- **Emergency Responder Radio Coverage:** The facility does not appear to be equipped with radio signal boosting systems required for emergency responders.

In general, the electrical distribution system is beyond its useful life. The age, condition, and availability of the equipment may pose risks to the facility due to unavailability of replacement or retrofit parts potentially affecting current operational needs or future expansions. The primary concern, in our opinion, relates to the decommissioned on-site generator system. All current facility operations considered critical may be at risk in the event of a utility power failure. Additionally, industry standard identification of emergency distribution systems appears to remain in place posing a misconception of critical power protection where one may not exist.

Lighting Systems

Interior Lighting: Most areas of the facility are equipped with surface and recessed fluorescent luminaires varying in nominal dimensions. One exception being the main lobby where linear fluorescent pendant styles were utilized. In general, the luminaires appear to be aged and discolored affecting performance and efficiency.

Interior Emergency Lighting: Unitized emergency lighting equipment with integral battery backup capabilities was observed to be implemented as the primary technology for interior emergency lighting. However, placement and spacing of unitized emergency lighting did not appear to be in compliance with current life safety standards.

Exit Lighting/Signage: Both electric and non-illuminated exit signs were observed within the facility along paths of egress. However, placement and spacing of exit signage did not appear to be in compliance with current life safety standards.

Exterior Lighting: Parking areas were observed to be equipped with pole mounted luminaires with HID sources for illumination. The perimeter of the building was observed to be equipped with surface mounted fluorescent luminaires along covered entries. Along the uncovered exterior walkways, wall packs utilizing high intensity discharge technology were observed. Some of which appear to be abandoned in place and not operational.

Most of the existing lighting systems within the facility were observed to be aged and discolored affecting performance. As a result, re-purposing luminaires may not be a viable option. Renovations to similarly constructed facilities have generally resulted in the installation of new lighting technologies along with new ceiling systems in order to allow for the most efficient use of the building.
Lighting Controls

Interior Lighting Control Systems: Interior lighting systems were observed to be controlled primarily with manual toggle switches. Some common area restrooms were observed to have automatic sensors for control. Dimming capabilities were not observed throughout the facility. Manual switches, and locations in which manual switches were converted to automatic sensors were observed, generally, to be at approximately 54” above finished floor which may not be in compliance with current American’s with Disabilities Act (ADA) standards. The interior lighting systems were not observed to have centralized automatic means of control through timers, relays, etc. Daylight harvesting controls were not observed in the facility.

Exterior Lighting Control Systems: Exterior lighting components were observed to be connected through a central contactor located in the basement of the facility. The contactor was noted to be operated by a photocell located on one of the pole lights on the south side of the building. No timeclocks were observed to be utilized as part of the exterior lighting control implementation.

Most of the lighting control systems were observed to be manual type and may not be in compliance with current American’s with Disabilities Act (ADA) standards. In addition to ADA corrections, several upgrades would need to be considered for current energy code compliance and improved efficiency reducing overall energy expenses related to artificial illumination. Lighting control upgrades would generally be required as a part of any energy efficiency upgrades related to the lighting systems based upon governing requirements of the International Energy Conservation Code. Utilizing automatic controls may provide for more efficiency of use, allow users/occupants customized control for the activities being performed, and assist in energy reduction measures. Automatic lighting control systems would generally include the following basic operational functions:

- Programmable timers that would allow for the lighting systems to be swept on/off based upon time of day and day-of-year settings.
- Manual controls that allow the user to operate lighting systems or portions thereof from accessible locations.
- Automatic sensors for installation in office areas, storage rooms, restrooms, conference rooms and similar partitioned spaces 300 square feet and smaller.

Additional lighting controls should be considered in relation to the daylighting zones within the facility. Areas surrounding windows are defined by the energy code as “daylight zones” and current versions of the energy code require that additional controls be utilized in daylighting zones to allow for automatic adjustment of artificial lighting operation based upon the available daylight within a space. Automatic daylight sensors may provide additional energy efficiency measures during daytime hours for lighting systems in near proximity to the exterior of the building.

Fire Alarm Systems

The facility is equipped with an addressable, digital fire alarm system manufactured by Silent Knight, model 5207 series. The main fire alarm control panel was not equipped with an inspection record indicating system inspection last occurrence. The fire alarm system was observed to include an automatic
dialer located on the 3rd floor abandoned jail control room. The system was observed to include the following operational characteristics:

- Manual pull stations located at the exits from the facility.
- Horn and strobe (audio/visual) notification appliances.
- Elevator recall and shutdown connections.

Notable: Manual pull stations were observed, generally, to be at approximately 54” above finished floor which is not in compliance with current American’s with Disabilities Act (ADA) standards. Audio/visual notification and smoke detection were observed to be inconsistent throughout the facility and considered out of compliance with current NFPA 72 standards.

The fire alarm system currently deployed within the facility was observed to be in general operable condition. However, the inconsistencies in detection and notification appliances may be inadequate and compromising the intent of the life safety system. In our opinion, the existing system may not be capable of modification to accommodate future operational needs.

Low Voltage Telecommunications Systems

Telecommunications Systems: Telecommunications service to the facility was observed to consist of copper and fiber backbone lines from the serving utility, fed into the basement of the building. Telecommunications demarcation of the utility service was observed to occur in a dedicated telecommunications equipment room located within the basement of the building. Copper distribution was observed throughout the building, distributed from the main demarcation point, to respective utilization points. The cabling was observed to be inadequately supported above ceilings and chased through surface mounted PVC and EMT raceways where accessible ceilings were not readily available.

Telecommunications infrastructure serving the facility was observed to be in general operable condition. However, the lack of horizontal cabling distribution support may potentially contribute to undesired interruptions of the telecommunications system.

Other Considerations

The observations noted in Section 1 of this report describe other electrical infrastructure commonly seen in Court House Facilities that should be considered for installation including the following:

- **Lightning Protection Systems:** An evaluation of the risks to the facility related to lightning strikes should be performed in order to determine if Lightning Protection should be deployed for the facility. This should be considered specifically in relation to radio antennas and other communications systems that are commonly utilized in police and public safety facilities.

- **Emergency Responder Radio Coverage:** The 2015 edition of the International Fire Code requires that all new and existing buildings be equipped with radio coverage systems that allow emergency responders to maintain radio/wireless communications throughout all areas of a building. Based upon the structural construction of this facility, and the presence of a basement below the facility, an evaluation of the radio signal strength of emergency responder systems should be conducted in order to determine the necessity of these systems.
The following documents were provided for review to assist in our investigation of the Nez Perce County Courthouse:

 **Note: After careful review of current building layout, historic photos of the structure, and later as-built drawings for additions and expansions, KPFF has concluded this expansion was never built. However, these drawings did include some information on the original Courthouse building and were sourced for information as the construction documents for the original construction of the Courthouse in the late 1890's were not available.

- Architectural drawings for addition, titled “Alterations & Additions to Nez Perce County Courthouse” prepared by Architect William I. Parr from Lewiston, Idaho—Dated January 11, 1973

- Architectural drawings for addition, titled “Nez Perce County Jail Expansion”, prepared by Architect Robert F. Broyles from Lewiston, Idaho—Dated April 21, 1977
Exterior Photos
Exterior Photos
Exterior Photos
Roof Condition
Roof Condition
Nez Perce County Court House
Courthouse Photos

Interior Photos
Interior Photos

![Image 1](image1)

![Image 2](image2)

![Image 3](image3)

![Image 4](image4)
Interior Photos
Vault
Vault
Secondary Evaluation – Prosecutors Office

On behalf of Nez Perce County, an observational tour was conducted of the existing Prosecutors Office located at 1221 F St. Lewiston, Idaho, on February 13, 2019 to observe and generally evaluate the architectural, structural, mechanical, and electrical systems of the facility which was constructed in the late 1950’s.

The Prosecutor's Office building (originally the State of Idaho Health Department Building) is a single-story structure approximately 9,360 sf, 1,180 sf of which is basement. The original structure was built in 1958 and was expanded by 2,400 sf on the southeast corner in the early 1970’s. The building has been continuously occupied, prior to the occupation by the Prosecutor's Office in 2009, the building was the Nez Perce County Sheriff's office.

The exterior walls appear to be wood framed with an exterior brick veneer. Roof framing is unknown. Parts of the first floor are wood framed either over a basement or crawl-space with one area that appeared to be slab on grade.

Architectural Systems - Exterior

The exterior of the building is a combination of structural brick and wood lap siding. The brick is in good condition. The wood siding regulated to the north and south sides of the building is in fair condition. The building is partially earth bermed on the south side, the grading and landscaping is such that there are several feet of soil right next to the exterior of the building. The roof is a single ply-membrane roof of unknown age but appears to be in good condition.

Architectural Systems - Interior

The interior has seen numerous remodels over the years. The walls are wood framed with gypsum wall board. Floors are mostly carpet, with newer carpet in the entry and corridors. Ceilings are combination of glued acoustic tile and suspended acoustic panels. The main entry door is aluminum storefront, other exterior doors are insulated hollow metal. Interior doors are flush wood doors in wood frames. Thought dated, the interior finishes are in good to fair shape.

Architectural Systems - Restrooms

The existing restrooms have been converted to meet accessibility, which has reduced the number of fixtures available. With the limited public use of this building, the restrooms are adequate. Any added use by the public would require additional restroom facilities.
Structural Systems

The purpose of this structural assessment is to do a visual evaluation of the existing building and provide preliminary recommendations on possible expansions or use as a courthouse. Although no structural issues were observed, the building does exhibit some qualities that could pose limitations in expansion.

Use of the building for public assembly/courthouse functions would require retrofit for increased live loads.

At the Prosecutor’s office it is unknown if the walls retaining earth above finish floor are concrete retaining walls with wood walls and veneer above the grade line or if the wood stud walls are full height. Either of these conditions could be problematic for further expansion and would require further evaluation and review of existing drawings for further recommendations.

There were no visible areas of structural deterioration or failure in the building. The floors were noticed to be very uneven in certain areas but do not seem to be a structural concern.

Any changes to the use to public assembly/courthouse would likely require retrofit of the structure. New additions should be structurally separate from the existing buildings if a retrofit is not desired. Additionally, foundations for new additions should be excavated to a depth to match the bottom of the new footing with the existing bottom of footing to avoid surcharging existing basement walls.

Mechanical HVAC

The building is served by a custom air handling unit with DX cooling and hot water heating, and a packaged DX rooftop unit with gas heat. The perimeter zones and corridors of the building are heated by hot water cabinet unit heaters. Heating hot water provided is by a steam boiler and steam to hot water heat exchanger. The air handling unit, DX compressor, and boiler are located in the basement, with a roof mounted condenser for the DX cooling. The HVAC equipment controls are pneumatic. Insulation on heating hot water system should be checked for asbestos.

The custom air handling unit, dx compressor and condenser, boiler, and cabinet unit heaters appear to be original to the building. They appear to be in functional condition but are at the end of their useful life.

The packaged DX rooftop unit appears to be a somewhat recent addition. It appears to be approximately 10-20 years of age and in functional condition.
The following matrix lists a recommended replacement timeline for HVAC systems based on American Society of HVAC and Refrigeration Engineers (ASHRAE) service life estimates ASHRAE HVAC Applications Handbook Chapter 37 table 4.

<table>
<thead>
<tr>
<th>System</th>
<th>System Condition</th>
<th>System Age (years)</th>
<th>Expected Service Life</th>
<th>Replace (y/n)</th>
<th>Replacement timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Custom Air Handling Unit</td>
<td>Functional</td>
<td>30+</td>
<td>25</td>
<td>Y</td>
<td>ASAP</td>
</tr>
<tr>
<td>DX Compressor and Condenser</td>
<td>Functional</td>
<td>30+</td>
<td>20</td>
<td>Y</td>
<td>ASAP</td>
</tr>
<tr>
<td>Boiler</td>
<td>Functional</td>
<td>30+</td>
<td>25</td>
<td>Y</td>
<td>ASAP</td>
</tr>
<tr>
<td>Cabinet Unit Heaters</td>
<td>Functional</td>
<td>30+</td>
<td>20</td>
<td>Y</td>
<td>ASAP</td>
</tr>
<tr>
<td>Packaged Rooftop</td>
<td>Good</td>
<td>10-20</td>
<td>15</td>
<td>Y</td>
<td>0-5 years</td>
</tr>
</tbody>
</table>

Plumbing

The Waste and Vent systems are cast iron hub and spigot construction and are original to the building and in fair condition. The domestic water piping appears to be original to the building and is covered with insulation but assumed to be sweat copper throughout. The waste, vent, and domestic water systems are all at the end of their useful lives and should be replaced in their entirety.

Plumbing fixtures appear to be original to the building and are at the end of their useful life and should be replaced.

Fire protection

There is no fire sprinkling system in the building.

Power Distribution Systems

The power distribution system serving the facility was observed to have the following characteristics:

- System Voltage: 240/120V, 3-phase, 4-wire
- Rated Ampacity: 400 Amps
- Serving Transformer: Pad mounted on site
- Recorded Demand: Not Available
- On-Site Generator: None observed
Lighting Systems

Interior Lighting: Most areas of the facility are equipped with recessed fluorescent luminaires, nominally 12-inch by 48-inch housings. In general, the interior lighting system appears to be original to the facility and were observed to be in generally good, operable condition.

Interior Emergency Lighting: Unitized emergency lighting equipment with integral battery backup capabilities was observed to be implemented as the primary technology for interior emergency lighting.

Exit Lighting/Signage: Electric exit signs were observed within the facility along paths of egress.

Lighting Controls

Interior Lighting Control Systems: Interior lighting systems were observed to be controlled primarily with manual toggle switches. Some common area restrooms were observed to have automatic sensors for control. Dimming capabilities were not observed within the interior lighting system. The interior lighting systems were not observed to have centralized automatic means of control through timers, relays, etc. Daylight harvesting controls were not observed in the facility.

Fire Alarm Systems

None observed
Secondary Evaluation – Brammer Building

On behalf of Nez Perce County, an observational tour was conducted of the existing Brammer Building, located at 1225 Idaho St. Lewiston, Idaho, on February 13, 2019 to observe and generally evaluate the architectural, structural, mechanical, and electrical systems of the facility which was constructed in the late 1970’s.

The Brammer Building, which houses the County Commissioner’s, County Building Department and Magistrate offices, was built in 1977. It is approximately 12,860 sf on four floors. The building has remained largely unchanged since it’s construction.

The Brammer Building is a two-story CMU building with a partial daylight basement. The floors are wood-framed, and the walls appear to be 8” block laid in a stack bond. The roof framing and foundation system are unknown. At the entry and in the mechanical room the CMU walls appear to be unbraced for the full height of the building.

Building entrances are on the north and south side of the building. There is a large conference room and public restrooms on the first floor, and small meeting rooms and the mechanical space in the basement. The third floor houses office for the County Commissioners Offices and the Building Department. The Magistrate’s Office is located on a separate intermediate floor with its own entrance on the north side of the building. This entrance is down a flight of stairs, thus these offices are not accessible from an ADA standpoint.

Architectural Systems - Exterior

The exterior of the building is a fluted concrete masonry units (CMU) with a framed metal siding clad mansard. The CMU is in very good condition. The metal siding on the mansard is faded, but appears to be in good condition. The roof is a built-up asphalt roof of unknown age. There were minimal signs of leaking on the third floor, however, the roof should be replaced soon if the County is to continue to occupy the building.

Architectural Systems - Interior

The interior has seen numerous remodels over the years. The walls are wood framed with gypsum wall board. Floors are mostly carpet, with newer carpet in the entry and corridors. Ceilings are combination of glued acoustic tile and suspended acoustic panels. Main entry is aluminum store front. Other exterior doors are insulated hollow metal. Interior doors are flush wood doors in wood frames. Thought dated, the interior finishes are in good to fair shape.

Architectural Systems - Restrooms

The existing restrooms have been converted to meet accessibility and are sized to adequately support the large meeting room on the first floor.
Architectural Systems - Vertical Circulation

There is a single central public stairway on the interior to the building. The handrails for the portion of the stair to the basement are sturdy and functional, but do not meet current code.

There is an elevator in the facility located adjacent to the main public stairway. The elevator accesses the basement and third floor but does not access the Magistrate’s Office. The elevator is in working condition; however, the interior cab finishes are worn and should be updated.

Structural Systems

There were no visible areas of structural deterioration or failure in the building. The unbraced tall walls of the Brammer Building do pose a question of capacity for out of plane loading especially around large openings, but as their reinforcing is unknown, this would require further investigation or access to as-built drawings for further evaluation. The stack bond walls and tall unbraced heights could prove challenging for additions as their capacity tends to be less than running bond CMU. Further investigation would be required to fully evaluate the potential for expansion. The floors were noticed to be very uneven in certain areas but do not seem to be a structural concern.

Mechanical HVAC

The Brammer Building is heated and cooled by split DX furnaces with outside air preheated by a duct heater. The furnaces and duct heater appear to be original to the building in functional condition. The elevator room is cooled by a minisplit DX system which appears to be approximately 10 years of age and in good condition.

The following matrix lists a recommended replacement timeline for HVAC systems based on American Society of HVAC and Refrigeration Engineers (ASHRAE) service life estimates ASHRAE HVAC Applications Handbook Chapter 37 table 4.

<table>
<thead>
<tr>
<th>System</th>
<th>System Condition</th>
<th>System Age (years)</th>
<th>Expected Service Life</th>
<th>Replace (y/n)</th>
<th>Replacement timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Furnaces</td>
<td>Functional</td>
<td>30+</td>
<td>18</td>
<td>Y</td>
<td>ASAP</td>
</tr>
<tr>
<td>Duct Furnace</td>
<td>Functional</td>
<td>30+</td>
<td>18</td>
<td>Y</td>
<td>ASAP</td>
</tr>
<tr>
<td>Mini Splits</td>
<td>Good</td>
<td>10</td>
<td>15</td>
<td>N</td>
<td>0-5 years</td>
</tr>
</tbody>
</table>

Plumbing

Plumbing was not visible in any of the building spaces but is assumed to be copper for domestic water and cast iron for waste and vent. Both systems are assumed to be original to the building (30+ years old).

Plumbing Fixtures appear to be 30+ years and are at the end of their useful life and should be replaced.
Fire Protection
There is no fire sprinkling system in the building.

Power Distribution Systems
The power distribution system serving the facility was observed to have the following characteristics:

- System Voltage: 240/120V, 3-phase, 4-wire
- Rated Ampacity: 500 Amps
- Serving Transformer: Pad mounted on site
- Recorded Demand: Not Available
- On-Site Generator: None observed

Lighting Systems
Interior Lighting: Most areas of the facility are equipped with recessed fluorescent luminaires, nominally 12-inch by 48-inch housings. In general, the interior lighting system appears to be original to the facility and were observed to be in generally good, operable condition.

Interior Emergency Lighting: Unitized emergency lighting equipment with integral battery backup capabilities was observed to be implemented as the primary technology for interior emergency lighting.

Exit Lighting/Signage: Electric exit signs were observed within the facility along paths of egress.

Lighting Controls
Interior Lighting Control Systems: Interior lighting systems were observed to be controlled primarily with manual toggle switches. Some common area restrooms were observed to have automatic sensors for control. Dimming capabilities were not observed within the interior lighting system. The interior lighting systems were not observed to have centralized automatic means of control through timers, relays, etc. Daylight harvesting controls were not observed in the facility.

Fire Alarm Systems
The facility is equipped with an addressable, digital fire alarm system manufactured by Notifier, model NFW2-100 series. The fire alarm system currently deployed within the facility was observed to be in general operable condition.